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NEW RESULTS IN SIGNAL DESIGN FOR THE AWGN CHANNEL

1. INTRODUCTION

The design of efficient signal sets for transmission over channels that are contami-
nated by Gaussian noise has been an active area of research for many years. A signal set
that is more efficient than another will typically result in comparable savings in trans-
mitted energy. Hence, the determination of optimal signal sets is an important problem
from a practical communication perspective as well as from a theoretical standpoint. A
fair amount of work has been done in the area of signal design. Unfortunately, few results
exist on the optimality of signal sets (throughout the paper an optimal signal set is one
that maximizes the average probability of detection.) The optimal selection of M-signal
vectors embedded in even the most fundamental type of noise, white Gaussian noise,
generally is not known. One of the most famous conjectures of communication, dating
back to 1948, states that the optimal signal vectors are vertices of an n dimensional
regular simplex for which M = n + 1{1, p. 74]. When the signal vectors are constrained
only by an average power limitation,/this conjecture is referred to as the strong sim-
plex conjecture (SSC) [2]. To avoid confusion, we refer to the conjecture of simplex
optimality when the signal vectors lie on the surface of a sphere, as the weak simplex
conjecture (WSC). The validity of the SSC implies the validity of the WSC, although
the converse statement is not true. Note that, irrecpective of whether or not the signal
vectors are average power constrained or peak power constrained, the capacity of the ad-
ditive Gaussian noise channel (AGNC) is the same|[3]{4, p. 324]. Under the assumption
that the signal vectors are of equal energy, Balakrishnan proved, in his seminal work [5],
that the regular simplex is 1) optimal (in terms of maximizing the average probability
of detection) as the signal-to-noise ratio (SNR) A approaches infinity, 2) optimal as X
approaches zero, and 3) locally optimal at all A\. He also proved that if a signal set does
exist that is optimal at all A, it is necessary the regular simplex signal set. In 1967,
Dunbridge [6] {7] extended Balakrishnan’s work where only an average power constraint
is imposed on the signal set. Dunbridge proved that the regular simplex is 1) the optimal
signal set as XA approaches infinity and 2) a local extremum at all A. He also proved that

the regular simplex must be the optimal signal set, if one does exist. For the case of
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M = 2, the regular simplex or antipodal signal set has been proven to be optimal at
all SNR for both the average and peak power constrained channels. Dunbridge proved,
under an average power constraint, that the regular simplex with A = 3 is optimal as
A approaches zero. Work on the weak simplex conjecture [8] was later shown by Farber
[9] to prove the conjecture for M < 5. It was proven by both Balakrishnan {10] and
Weber (11, p. 215] that the regular simplex maximizes the minimum distance under a
peak power constraint.

Generally, the optimal design of signals for the noncoherent Gaussian channel is also
unknown. It has been long conjectured that the orthogonal signal set is the global opti-
mum. Weber [11, p. 269] proved that the orthogonal signal set is locally optimum under
no bandwidth constraint. Stone and Weber [12] further proved the optimality of the or-
thogonal signal set as A approaches infinity. The orthogonal signal set has been proven
to be the global optimum for all SNR for the case of M = 2 [13]. Cases of restricted

dimensionality have been explored [14] for two dimensions and M = 2,3,4.6,12.

A number of new results are presented in this paper. The major result that is
presented in Section 3 is a counterexample to the strong simplex conjecture. An explicit
signal set is shown to be better than the regular simplex for all A/ > 7 under an average
power constraint. This leads to a proof establishing, for any Al > 7. that there are
no signal sets that are optimal at all signal-to-ncise ratios. In Section 4 we prove that
the regular simplex uniquely maximizes the minimum distance under an average power
constraint. A simple proof that the regular simplex maximizes the minimum distance
under a peak power constraint is also shown. This work leads to the coroliary that
a signal set that maximizes the minimum distance between signals is ~.ot necessarily
optimum. This is an interesting result, since much signal-design work has been based on
maximizing the minimum distance between signals because of the inherent simplicity of
the criteria. In Section 5 we address the global optimality of the regular simplex under
the performance measure of the union bound on the protability of detection. The union
bound is often used to assess the performance of sign:l sets at medium to high SNR when
computation of the probability of detection is intractable, It is proven that the regular

simplex uniquely maximizes the union bound at all SNR. The optimality of signal sets
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at low signal-to-noise ratios is also examined. It is proven that the optimal solution at
low signal-to-noise ratios is not an equal energy solution for all M > 7. Additionally the
signal set presented in Section 3 is shown to be the optimal signal set when restricted

to all 1-D signal sets.

2. PRELIMINARIES

Consider the transmission of one of M signals s;(f), 1 = 1,---, M through a channel
contaminated with white Gaussian noise n(f). The signals can be represented through
a discrete time n dimensional vector representation s; (the time discretization of a con-
tinuous time signal is discussed at length in Ref.{11, p. 127]). After transmission we

receive the n dimensional vector
y=si+n i1=1..- M {H

and wish to determine which of the M signals was transmitted. We define the SNR

parameter
1 M
M= 7 s (2)
=1

where T denotes transpose. It is assumed that n is a zero mean Gaussian vector with
covariance matrix equal to the n by n identity matrix. We define the normalized M

dimensional matrix of inner products a = (\;;) by,

It immediately follows that
f: A = M. (3)
i=1

For an equal energy signal set, the A;;, ¢ = 1,---, M are identical.

The optimum detector, in terms of maximizing the average probability of detection,
chooses that signal s;, which maximizes p(y|s;)p;, where the a priori probability of the
ith signal is p; and p(yls:) is the probability density function of y conditioned on s;.
The results derived throughout the paper will assume that the signals are equally likely.
ie,p = Xli In case of ties, we choose the signal with the smallest index from the s,

that tied. We can write p(yls:)p;: as,

plylsi)p: = @;1)7,7; exp[—é—(y ~s:)"(y — i) +logpi]. (4)

3
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. Tg.
Upon defining Ei(y) = y7s; — 22 + log pi, we see that Eq. (4) is maximized when we
choose the signal corresponding to the maximum of Ei(y). The average probability of

detection is,

i

Py ZP:‘P(E:'(Y) = max E;(y)ls:)

= Zp,-/---/l\‘p(ylsi)dyl---dyn
1 1
= ZW/A expl—5y'y + Ei(y)ldy: --- dyn,

where A; corresponds to the decision region {y|F;(y) = max; E;(y)} for cases where a
unique maximum of E;(y) for j = 1,---, M exists. When a unique maximum does not
exist, we resolve ties by choosing the signal index from the smallest index among those
regions {y|E;(y) = max; E;(y)} that overlap. When defined in this manner the A; are

disjoint, and the above can be rewritten as
_ 1 1 7 .
FPy= Gyl /Rn exp[——éy y + max Ey)ldy, - - - dyn. (5)

where R, represents n-dimensional Euclidean space. This equation can be examined
by defining a n-dimensional Gaussian vector z with zero mean and identity covariance
matrix. The equation then becomes

Py = E(exp[max Ei(2)]), (6)
where F;(z) is Gaussian distributed with moments

[IVEY:
E(Ei(z)) = —5/\.','/\ + log pi
Cov(Ei(z), Ej(z)) = sT's; = A A%

Note that the probability of detection in Eq. (6) is only a function of the SNR A, the
nornmalized matrix of inner products a, and the a priori signal probabilitics p;. This is
because the Gaussian distribution is completely specified in terms of its first and second
moments. Since a is invariant under orthogonal transformations imposed on the signal
vectors, the probability of detection is invariant under any orthogonal transformation
of the signal vectors. It is known that the inner product matrix or Gram matrix of the

signal vectors is positive semidefinite [15, p. 407]. The following lemma is important to

the forthcoming development:
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Lemma 1 - Every ianer product matriz uniquely specifies a signal set-up to a geomnetric

wsometry.

The proof is shown in Appendix A. This lemuma shows that signal sets may be represented
in terms of their inner product matrices. Hence, we define the admissible inner product
matrices A to be those inner product matrices that are positive semidefinite and setisfy
the average power constraint in Eq. (3). It is seen that A is a compact convex set. The
boundary of A is the set of inner product matrices in A with determinant identically
zero. The interior is the set of inner product matrices in A with determinant greater
than zero. Since A is compact, and the probability of detection is a continuous function
of a [10], it follows that the vector «, which maximizes the probability of detection, is
found in A. Tt is shown in Ref. [7, p. 63] that a necessary condition for optimality is
that the sum of the signal vectors is identically zero. An equivalence of ¥°;s; = 0 is {7,
p. 66]

M M
DD N =0. (7)
i=1j7=1
Another equivalence is
M
SNXij=0, j=1,--- M. (8)
i=1

Equation (7) specifies a hyperplane that contains nonadmissible as well as admissible a.
The intersection of the hyperplane with A contains the optimal a.

A partial ordering of 4 can be found as follows. Let two inner product matrices
« and o have the same diagonal elements. If M; S Ay forall 4 £ j then Py(A o) >
Fy(A, ). This follows, since the derivative of the detection probability with respect to

each Ai; 7 # j is nonpositive |7, p. 68].

Definition 1 — {sy,---,s} is a reqular sstmpler if each s;. i = L.--+, M is at the samne
distance from each s, j = 1,---, M where i # j. If additionally ¥;s; - 0. the regular

simplex is a reqular simplex signal set.

The regular simplex signal set can be specified in terms of the inner product matrix by

the relations,

Aj =~ Bj=1 M if] 9)
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The probability of detection of the simplex Py, is given by Ref. |11, p. 162]

My
\/2_7?-/ exp[— )\2 w-1) [M-1(z)dr M >2 (10)
where . )
®(z) = Wor /:w exp[——%]dx. (11

A necessary condition for optimality at low SNR is that the mean width of the polytope
generated by the signal set be a maximum. This is true for both the average power
constrained case [6] and the peak power constrained case [5]. The polytope of a set of

signal vectors {s;} is the convex hull,
{vly = Z’Yisi, Z7i =1, %20, i=1,---,M}
H ?
The mean width B is defined as
B= [ maxyls du(y.), (12)

where (1, is the surface of an n dimensional unit sphere, y, is a unit vector representing

a point on 2, and u(y,) is a uniform probability measure over {},, as a function of y,,.

3. COUNTEREXAMPLE TO THE STRONG SIMPLEX CONJECTURE

An explicit signal set is presented that has a prabability of detection greater than
the regular simplex signal set. Consider placing M — 2 signals at the origin, and placing
the remaining two vectors in a manner such that they form an antipodal signal set as
in Fig. 1. (Two equal length vectors s; and s, are defined to be antipodal whenever
sTsy = —|ls1|] [Is2]] where || - || represents the Eucliden or Ly norm) . We will refer to
this signal set as the low SNR 1-D signal set (L1). Figure 1 shows the distance = from
the origin to s, or s,, which is determined by Eq. (2). thus yielding = = /\\/1; . When the
signals are equally likely. it is easily seen from Eq. (4) that the optimal detector chooses
the signal that is closest in Euclidean distance to the received signal. We define the
decision regions A; such that if y € A; we choose s;. The decision regions are shown in
Fig. 1. fy € AM = {A;,---,Am} any s;, 1 € {3,---, M} can be chosen. For simplicity,
we will assume that if y € AM then s; is chosen. Denoting P, as the probability of
detection of signal s;, we can compute the average probability of detection of the L1

signal set Fy,, as,
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H M ‘
A 1 % As ; A 2
s i 8,85,%8 | S,
! i 34, M | t
1 ! 1 ! [ |
s zi o Ez >
Fig. 1 — L1 Code
1 M
Py, = M;Pd‘.. (13)
Now by symmetry Py, = P4, and
Pd1 = P(y 1< AllS‘)
z
= (= 14
) (14
where ®(z) is defined in Eq. (11). It is seen that Py, = --+ = P4, = 0 and denoting
6 € {s1,s2,-*,Sp} as the decision that is made regarding which signal is sent, we have
Py, = P(6=ssls3)
= P(6=ssly € AY,s5)P(y € A}|ss) + P(6 = ssly € A, s3) P(Af[ss)
= 2@(%) -1 (M>3). (15)
Now the average probability of detection can be computed as
1
Pay = 372Pu + P
1 z
= S [4B(Z) =1
l4a(Z) 1)
1 A M
= —MdP{=y/—)—1 M > 3). 16
eSS 1] (M 2 3) (16)

Proposition 1 —— Neighborhoods A €

[0,60), 6 > O of A, exist where, Py, (A) is

strictly greater than Py (X} for all M > 7 and less than Py, (X) for 3 < M <6.
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Proof: Assume M is fixed. Since both Py, = Fy, (A M) and £, Py, (A, M) are
differentiable with respect to A on X € [0,00) and Py, = Py, = 1 — & oAt A 0t s
sufficient 16, p. 209] to prove that

8Py, (N, M) AP, (A M)

d“( ) aA A=0 d/\ A=) (1 )
Now
, 4 0934
Py, (0,M) = i ;f
: A=0
4 0 ’\/wexp[—-——]dr
T M oA
A=0
1
= (M > 3). (18)

vMn

Since the integrand of Eq. (10) is differentiable with respect to A on A € [0, 00), and the

— A /My
ToTE MAZ ) expl~ S 9 ) oM -1 (z)dur,

is integrable, it follows from Ref. [17, p.215] that the order of differentiation and inte-

derivative

gration can be reversed. Hence,

8Pd° M-1 ]
e ool S e o

Since the integrand in Eq. (19) is negative for x < 0 it follows that,

F A[ / “w( A1 .
(¢ 1/2 (M Y rexp| fb (r)dr. (20}

For large M, the function $M~! resembles a step Rmction, with the location of the

P 0, M) =

step increasing in M. The location of the step increases slowly with Al =0 we wili

approximate the location of the step by clog(M — 1) and upper bound Eq. (20) by

M clog(M-1t) (X].)[ ] \ /"XI © \p[
PO, M) < ~log (M — 1 ———-pf’ Heyd P L
(0, M) [/0 clog( e Y (e RS

M -1 j(‘l(}g(ﬂ!—l) 2

where ¢ > [} is a constant to be optimized later, and log represents the natural logarithm.

Both terms above can be directly integrated yielding,

J
Pl

Ay

AL
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M Fclog(/\‘! - 1) i exp|~ (ol M 1 )
P;(O» M) < (‘bM(Clog(.’W 1))~ (?)M)
M-1 ! M 2 \/—
< ‘/ ;(M“‘“ clog(M — l) expllog((M — 1)" 1) log{(M — 1) H)l]
IR M NoT™ ]
clog.4 - 1) M !

) Zk)g(’.l-l)‘ (21)

/\

\/7(,\, ~ ) V 2r(M = 1) \/w";
We want to determine when P, > P or equivalently when r = P5/FP < 1. From Eq.
(21) and Eq. (18)

clog{M-1; + __.‘..l__( 1 )(‘Qiog(;’t]—l)
;;M(M 1) V an(M-1) \ JAT1

1
Mn

logM-1) M ( i
VM -1 oM ~1) vM -1

Ve el M= = pAr o). (22)
For each M define
cy = argmin h(M,c). (23)

We would like to determine ¢y in order to find the smallest M such that P;/F;, < 1. By
using an available minimization routine, we found ¢z = .78 for M = 30 and h(30, 78) -
.9896. To prove r < 1 for all M > 30 in Appendix B it is shown that A{M.c) is a
monotonically decreasing function of M for all M > 30.

The bound of Eq. (22) is not tight enough for the cases of M < 30. In Appendix C,
a tighter upper bound is derived that is shown by Eq. (37) as

T 48 oM M M _ N
r< (M_l)l @“’ (i )+4¢> @) + W—L)CXPML (24)

where the bound improves as the positive integer k increases. To evaluate rigorously an
upper bound on r, we carry only five decimal places throughout any mulitiplication and
round up or down the fifth aecimal place as appropriate to upper bound r. We define
t1 as the evaluation in this manner of Y57 &M (i 4), and t; as the evaluation of ®M(4).
We therefore upper bound Eq. {24) by

4 M .
i Dbt dty) + ————-————————exp{«-éﬂ]. (25)

r< L) =\ G s 28 1)

We have computed ¢, and t; by lower and upper bounding ¢ functions for given ¥ from
a table of the ® function to five decimal places [18]. The results can be verified and are
shown in Tabie 1. This proves the result for 7 < M < oo.

9
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Now we proceed to lower bound » for M 4.5.6. The regular simplex was proven
to be optimal for Af == 3 6] at low signal-to-noise ratios. In Appendix C. the tight lower

bound of Eq. (38) is derived

M | T T
P> e (- expl- ] - "———~«~-~—{ CLOYDM 050y M
V2M - 1) =3 Vo= 2(4) J
[« [ iy (k= 1) M \
- =) ¢V (i)t 4 PN b e oxp] 81D T
VOr-n [ v & K NeTRaY pl

(26

A zain. we will carry five decimal places throughout the evaluation. rounding up or down

appropriately to further lower bound r. We define ¢; as the evaluation in this manner

M (Mo { _ 1Yol 1 b 19 EVBM 0% 1 BM 1Y ae the
of — s @M (- 1) expl—] - Ty (0o (0B) M (=.051) 4 @M (= 1)}, g5 us (h

evaluation of Y57 &M (i), g5 < &M (4), and g4 as the evaluation of M=1(1). In Table

2 the lower bound is tabulated.

r—-;—"“[_(; k-1

M
e

e 0XP[— 8]y (27)

r> fi(M)=q 4 —qy + 4 q;} v
1 ‘ K R J2O 1)

Again. the values of the & function were taken from Ref. [18]. In the computation of ;.
$(—1) and $(—.051) the values were rounded up to the fifth decimal place, and ¢(-1)
was rounded down. gy is the result of rounding up. and q; and q; are the results of
rounding down. In the case of M = 5, k was found to be too large for the use of the
table. so in this case an approximation from Ref. {19, Eq. 26.2.17) was used, which has
an error < 7.5-107%, and where we rounded the fifth decimal place up or down as hefore.
Thus the proposition is proven.

This result, apart from being a counterexample to the SS5C. leads to an important

theoren.

Theorem 1 - For any fired M > 7 there is no signal set that is optimal ¢! all signal-

to-noise rotios.

Proof: The proof follows from the proposition and Theorem 14 in Ref. [6] that estab-
lished that the regular simplex is the only signal structure that is a local extremum at

all A > 0.

10
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4. MAXIMIZATION OF MINIMUM DISTANCE

The normalized distance d;;j, between s; and s;, is the Fuclidean distance divided by
A. We define the normalized minimum distance dyn, as the minimum Euclidean distance
divided by the SNR A. Maximization of minimum Euclidean distance is equivalent to
maximization of dmin. It was proven by both Balakrishnan [10} and Weber |11, p. 215
that the regular simplex uniquely maximizes the minimum distance under a peak power
constraint A\; = 1, ¢ = 1,---, M. Here a new shortened proof of this is given. Note that
maximizing the minimum distance for the peak power constrained chaunel is equivalent

to minimizing max;z; Aij.

Theorem 2 — The reqular simplez is the unique signal set that marimizes the minimum

distance between the signal vectors under a peak power constraint A; = 1, 1= 1,--- M.

Proof: The minimum value of max;y; Ai; is — since for any signal set a

-1
Yoslys; 20
: 7

implies that [11, p. 215], M

S N+ (28)

i 3>
Denoting the matrix of inner products of the regular simplex as a,, any other matrix

o' # a, that satisfies maxiz; Aj; = must have at least one \;; strictly less than

~ %1
~+7=1, which violates Eq. (28). Therefore o' = a.

Now we will generalize this result to the case where the signal vectors are only
constrained by 3°; Ay = M. The difficulty found in solving this problem as opposed to
the prior problem is that the distance between the signal vectors s; and s; no longer
depends only on the inner product A;;, @ # 7. The lemmas that follow will help to

overcome this difficulty.

Lemma 2 — A signal set with ¥; \ii = M mazimizes the minimum distance dpin tf
and only if & = d2,,, = &4 for alli # j.

Proof: It can be seen that

Yo3dh = DD A= 2 (29)

i j>i i j>i

{1
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= (M- 1)ZA,,—222A.,

1 J>i

and by Eq. (28)

S < MA (30)

©j>i
Since 32,3 5:1 = M“;"I), we have d?,,m——%’—‘l < Miords, < ,f,'fl with equality

if and only if di; = d,nin for all i # j. The latter condition is satisfied by the regular
simplex signal set.

Now, we only need to prove that the regular simplex is the unique signal structure
that maximizes dp,in, since we know from above that it is a signal structure that maxi-
mizes dmin. Note that translations of a signal set result in the same distances between

signal vectors.
Lemma 3 —A necessary condition for mazimizing the minimum distance is 3_;s, = (.

Proof: Suppose ¥ ;s; # 0 and assume (w.lo.g.) dmin > 0. Consider the translation
f= Z—Li, s, = s; + f which implies 3; s} = 0. By our earlier remark, d,,,, = dmmn.

Now,

il

T AuN?

i

Z(Si - Nisi- N
= zxv 2zs'Tf+fo
ZAH,\Q uff (31)

Hence 3_; Ais = 73 A, where v > 1. Since ¥; Ay = M, we have 3, Al = {1 SO we
can rescale these signal vectors by forming another signal set s} = <vs;. Again note that
;s =0, 3; A, = M. The normalized distance between any two vectors of {s}} is
"2 " " ¢
dl] —— A "+‘ A - 2/\;]
= ’Y(/\’ + )\' 2/\1')')

where the last equality follows by our earlier remark. Since y > 1, d}; > d;; with equality
if and only if di; = 0. Since we assumed dpin > 0, df; > di; and hence d},., > dmin.

which is a contradiction. This proves the necessary condition 3_;s; == (.

12
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This leads to the theorem

Theorem 3 — The regular simplex signal set is the unique signal set that marimizes

the minimum distance.

Proof: The result follows immediately from Lemmas 2 and 3 and from Definition 1.

This result leads to the corollary

Corollary 1 — Given X > 0, there exist signal sels that marimize the minimum dis-

tance between signals but do not maximize Fy.

Proof: The result follows from Theorem 3, which states that the regular simplex is the
unique signal set that maximizes dp.i; and from Proposition 1, which demonstrates that

the regular simplex is suboptimal in terms of Fy.

5. OPTIMALITY

In this section we address the optimality of signal sets in terms of both the average
probability of error and the union bound on that probability. The union bound is an
often used fairly tight approximation for low rates [20, p. 68] or relatively high SNRs

when computing the average probability of error is intractable.
Theorem 4 — The regular simpler uniquely minimizes the union bound.

Proof: The union bound for the average probability of error of the ith signal, F., is

expressed as [20, p. 60]

P,< > P, (32)
Jiifi
where F.,_ | is the error probability, given the ith signal is sent and the jth signal is the

only alternative. The average probability of error is given by
P, = L S P
M

The union bound P{* for the average probability of error is,

P < Pé““—*z}Z?”&-«)
i j#i
2
= P,

i j>i

13
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Now
‘1’(“2/\)

F‘J -

where d;; is the normalized Euclidean distance between s, and s; as defined in Section

4. Hence,

plu)
P ST

i >
Let u = (d%,,d%,,- - - »d(ZM_l)M) where we include all d,,, i # j. Let f(u;) ‘24’(—@)\)
where u; is the ith element of u. Hence P = L0 f(n,) where L i!_(_*:)’:ﬂ is the
dimension of u. Now f(u;) is a convex U function on the interval [, x) since
A + A >0
2exp{2Z] V87 i expl2ZF| Val2m T T

for all z > 0. Hence Jensen's inequality applies:

1@ =

1 &
u) . T il . .
‘Fe - A[Lg Lf(ui) 2 /ul)
= f( }:Zd (33)
i >t

The right-hand side of Eq. (33) is a strictly decreasing function of 3, )5, d%. hence it
reaches its minimum value whenever 3, ¥, ; d% is maximum. We know from Lemma 3

that 3, ¥iu; @2 < M? with equality if and only if dmin = 224, By Theorem 3 equality
7>i Gij quality M1

is achieved uniquely by the regular simplex, which is the only signal set that minimizes
the right-hand side of Eq. (33). Note that for the case d"‘ 2“ Jensen’s inequality is
satisfied with equality as both sides become

M-1

This completes the proof.

Corollary 2 — There ezists A > 0 and signal sets {s,} and {s'} such that P") < P
whereas P, > P!. The probabilities of error and union bounds for the signal sets {s;}
and {s'} are P., P, and P, P{) respectively.

Proof: Follows from proposition Eq. (1) and the previous theorem with {s,} correspond-
ing to the simplex.

We now will examine characteristics of optimal signal sets at low SNR.

Theorem 5 — For all M > 7, the optimal solution at low SNR is not an equal energy

solution.

14
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Proof: A necessary condition for optimality is that the mean width of the polvtope
Eq. (12) be maximized [6]. However, it was stated by Balakrishnan {5 that the regular
simplex maximizes Eq. (12) among all equal encergy signal sets. Since proposition Fe.
(1) showed that the L1 signal set is better than the regular simplex for all A > 7. it is
certainly better than all equal energy codes at low SNR. Hence, the optimal solution is

not an equal energy solution.

Theorem 6 — For sufficiently small \, the L1 signal set 1s umiquely optimal in the

class of 1-D signal sets that are average power constrained 1.c., satisfy A* < .

Proof: A necessary condition for optimality is again that the mean width of the polyvtope

Eq. (12) be maximized. For signa! sets restricted to one dimension this is equivalent to

maximizing,
By = maxs; + max —s,,
1 ?
= maxs; — mins;. (34)
1 1

Since detection probability can be shown to be an increasing function of X [7, p. 62] the
solution will lie on the boundary A* = P. It has been remarked by Dunbridge and can
also be seen by Eq. (12) that an optimal solution must have signal vectors either on the
boundary of the convex hull generated by the signal vectors or else at the origin. Hence
three possibilities are to be considered:

Case 11 {s;} = 0fori=1,--- M —7r:and {s;} = o, > 0 (or cquivalently {s,}
zy <0 forg=M-—-r+1,---, M,

Case 2: {s:;} = 2y > 0 and {s;} = r2 > x1, (or equivalently {s,} ry < 0,
{sj}=xo<xy)fori=1,--- M—randj—~M—r 1, Al

Case 3: {s;} =0fori =1, M~r—pand{s,} r<Ofor; M-7r-pi
Lo, M —prand {si} =x2p>0for k- A —p i 1. AL

A necessary condition for optimality [6] is that the convex hull generated by the
signal vectors contain the origin. Hence, (fase 2 is immediately dismissed. 3y is seen to
be maximized in Case | when v Lor ry  AVAI resulting in 3, AVAT. However,
the L1 code of Case 3 results in B, AV2M. Hence, Case 1 s distiissed. Tt can be
seen, for any code in Case 3 with r > 1, that we can further decrease oy by rearranging,
r — 1 signals from x, to the origin. This will result in an inerease in 3, ry — o, We
can increase y if p > 1. Hence, the optimal signal set belougs to Case 3 and is such
that 7 = p = L. Now, we only need to prove that x;  —ry. This follows divectly from

the Cauchy-Schwartz inequality,

15
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ZT,‘S.‘ < (Z If)(zl&f) e, 8 > 4.
i i :
Let sy = sy = 1, ry = x; >0, 7y = —r; > 0so that the above becomes,

ry—r; < 2t b ad)
AVZAL,

where equality holds if and only if (. —x,)T is a multiple of to (1.1). This will oceur

6. CONCLUSIONS

The problem of optimal signal design for the white Gaussian noise channel has been
considered to be a fundamental problem for many years. We have exhibited a counterex-
ample that disproves the long-standing strong-simplex conjecture. This counterexample
essentially relies on the tradeoffs between communication rate and performance. When
the communication rate is decreased by placing M — 2 signals at the origin. we can place
the remaining two signals at a relatively large distance with the intent of at least dis-
criminating between these two signals. At low signal-to-noise ratios, the performance is
better than that of the regular simplex for which the distances between signal vectors is
smaller than the distance between the two signals of the counterexample. This difference
counteracts the effect that the high probability of error of the remaining M - 2 signals
has on the performance of the L1 signal set.

This result in conjunction with previous work led to several theorems. It was estab-
lished that the optimal signal set is indeed dependent on the signal-to-noise ratio for all
M > 7. The optimal signal sets at low SNR for all M > 7 are necessartly unequal energy
signal sets. The design of signal sets, under the criteria of maximizing the minimum
distance, was also considered. Past results that established that the regular simplex
maximizes the minimum distance under a peak power constraint were extended to the
case of only an average power constraint. This led to the corollary that signal sets that
maximize the minimum distance need not maximize the probability of detection. We
also proved that the regular simplex optimizes the union bound. In general, optimiza-
tion of the union bound does ot necessarily indicate maximization of probability of
detection. Finally the L1 signal set was shown t» be the optimal signal set constrained

to one dimension.

16
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The determination of the optimal signal sets, which maximize the probability of
detection, remains in general unsolved for low SNR. Perhaps optimal designs can be
found for some partition of the SNR range [0, oc) as a function of Af. The weak simplex
conjecture has not been proven and the optimal design under a noncoherent assump-
tion remain unsolved. With few exceptions, optimal signal designs under a bandwidth

constraint remain unknown.
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Appendix A

REPRESENTATION OF INNER PRODUCT MATRIX

We prove that an inner product matrix uniguely determines a signal set up to an isom-
ey g
etry. This is proven for complex matrices; although, we are only interested in real inner

product matrices. Let C, denote the set of all n by n complex matrices.

Definition 2 — Two signal sets A = {s;,---Sara} and B {sy,- - -sap} are isometric
if there exzists a bijective transformation T : A — B. called an isometry, such that

d(T'Sia:T'Sja) = d(Sia,Sja) for all i, ] where d(r.y) is the Fuclidean distance from r to y.

Suppose that A and B are two signal sets of M vectors. Let n be the maximum of the
dimension of the vectors in 4 and B. Let A be a matrix whose columns are composed
of the signal vectors of the first signal set. and B the matrix whose columns are the
signal vectors of the second signal set. Suppose that the matrix of inner products
corresponding to A (i.e., A*A where x denotes the Hermitian transpose of A) is the
same as the inner product matrix corresponding to B. Embed A and B into n by n
matrices A" and B’ by adding, if necessary, zeroes to the right and the bottom of each
matrix. It follows from Ref. [15, p. 411] that there exists a unique positive semidefinite
matrix P = (A*A’)2 € C, and a unitary matrix V € Cp such that A’ = VP [21].
Similarly, B’ = WP (since the inner product matrix A*A’ is the same for both signal
sets), and hence A’ == (VW*)B’. The matrix VW* is unitary and unitarv matrices are
easily shown to be isometries. The additional zero columns can be removed from A’
and B’ and the resulting matrices are still related by the unitary matrix VIW*. Since
the additional rows of zeroes are inconsequential, we conclude that two signal sets of Af
vectors are isometric if the matrices of inner products A*A and B* B are identical. Note
that the converse is not necessarily true, since an inner product matrix of a signal set o

depends on the ordering of the columns of A.
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Appendix B

PROOF OF MONOTONICITY

We prove that Eq. (22) is monotonically decreasing for M > 30. Consider the first term

in Eq. (22) (M 1
A = Vi Bl =)

It is easily seen that the derivative of f; with respect to M is,

2 —log(M - 1)

fl(M): \/;r. Q(M— 1)%

Hence fi(n) < 0 whenever log(M —1) > 2 or M > 6. Since f; is a continuous function of
M, the first term is a monotonically decreasing function of M for M > 6. Next consider
the second term in Eq. (22)

M 1 2
f2 M = c log(M-1)
() \/2(M-—1)(\/(M-—1))
— f(( )c’log(M ~1}+1 + (M _ 1)( N[l— I)c:? log(M—-1)+1
_ ‘/.((M— 1) —1-¢? bEgM 1) N (M _ 1)1—c2!g§2<M~1)). (35)

To analyze fo(M) examine the function
9(M) = (M — 1)*™),

where a(M) is any differentiable function of M. The derivative of g(M) is

a(M)(M = 1))

g(M) = )

+ (M - 1)y*M og(M — D)o/ (M).

A sufficient condition for ¢'(M) < 0 for any M > 2 is a(M) < 0 and /(M) < 0.

Therefore a sufficient condition for the first term of fo(M) to have a derivative that is
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~1-c?log{M—-1)

negative is that 3 < 0and — W{;:ﬁ < 0. Both of these conditions are satisfied

for M > 2. The sufficient conditions for the second term of f,(M) are Lﬂﬁgf—”—'ﬂ <0
and —5(;9;_—1—) < 0. The first condition is satisfied whenever M > 7 for ¢5 ~ .78 where
cu is defined in Eq. (23). The second condition is satisfied for M > 2. Thus, the second

term is monotonically decreasing for M > 7. In conclusion the bound in Eq. (22) is

monotonically decreasing for all M > 30.
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Appendix C

DERIVATION OF BOUNDS

We first derive an upper bound of r. Normalizing Eq. (20) by dividing through by Eq.

(18) we have,
1/2(M—1)/ z expl— @M 1(z)dz. (36)
This can be bounded by
r o< M\/ ! [4 /% exp[—ic—z] M=Uz)dx + - /% exp| ————]@M Yz)dz + -
oM -1) [k 2 :

+ 4/&1‘_1exp ——-—]€I>M ’(x)dx+/ z exp| ———Z—]dz}.

This can be integrated yielding

r< T [T - SO+ eV - (I +

+ 4[@”(4)41»“(4%—1)1 +

} _—ﬂ——exp[—S]
J2M = 1)

M
+ —=—————-exp[-8]. (37)
J2(M = 1)
We now derive a lower bound of r. Normalizing Eq. (19) by dividing through by Eq.

(18) we have ,

_ M“_l[ 4%@% )+4¢M(4\}

This is lower bounded by,

M - 1 ~1
r > m{/ xexp[————]‘DM (~1)dz - 05/ exp[— ]fbM (x)dx

1 /;—1 exp[——%]@“"l(z)dx — = /:1'95 exp[———a;]@M“’(x)dx +

o0 xz
/ xexp[~——]fbM"’(x)dx] .
0 2
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This can be integrated as

AI 19

P> e M () (XP{W—] VAL = DY Lo M~ .05 + ¢M(—1]
,/2(41—1) 27, ’
/ T exp|— <I>” "a)dr.
V2 (fv-1

Upon substituting g > ——nbbms @M= expl 3] = /g (£ (65)07 (- 051)
dM(—1)} the above is,

M %0 72
r>q+ / afexp[—%]@”“l(x)dr,

J(M =1y /0

which can be bounded by,

ro> (11+'—2—(-€;—‘1‘){0/;e pl— 2]¢>M 1(Idr§-/ exp(— <I>M "o)ydr 4 -
4k - 1) M Moty [ _fr_ .
b= o ol @)z + 947 ) /4 z exp| - |dr
o T [Rem By _om Ay L Bram 2y em By 4
o O - M) + @) - M) +
. A e _ M-1 4
. 4(}»” 1)(¢M(4)_¢)M(4(A 1)))} M exp|—8|® ()‘
k 2(M = 1)
This reduces to
™ 4520 A4 4k =) M exp|—-8]PM-1(4)
My=q 4+ J——— [~ @M (o) + 22— LM 4} } .
AOD = m G { 1»; vF k W 20M = 1)

(3%)
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